Parallélogramme vs rectangle
Le parallélogramme et le rectangle sont des quadrilatères. La géométrie de ces figures était connue de l'homme depuis des milliers d'années. Le sujet est explicitement traité dans le livre «Éléments» écrit par le mathématicien grec Euclide.
Parallélogramme
Le parallélogramme peut être défini comme la figure géométrique à quatre côtés, avec des côtés opposés parallèles les uns aux autres. Plus précisément, il s'agit d'un quadrilatère à deux paires de côtés parallèles. Cette nature parallèle donne de nombreuses caractéristiques géométriques aux parallélogrammes.
Un quadrilatère est un parallélogramme si les caractéristiques géométriques suivantes sont trouvées.
• Deux paires de côtés opposés ont la même longueur. (AB = DC, AD = BC)
• Deux paires d'angles opposés sont de taille égale. (
)
• Si les angles adjacents sont supplémentaires
• Une paire de côtés opposés est parallèle et de même longueur. (AB = DC et AB∥DC)
• Les diagonales se coupent en deux (AO = OC, BO = OD)
• Chaque diagonale divise le quadrilatère en deux triangles congruents. (∆ADB ≡ ∆BCD, ∆ABC ≡ ∆ADC)
De plus, la somme des carrés des côtés est égale à la somme des carrés des diagonales. Ceci est parfois appelé la loi du parallélogramme et a de nombreuses applications en physique et en ingénierie. (AB 2 + BC 2 + CD 2 + DA 2 = AC 2 + BD 2)
Chacune des caractéristiques ci-dessus peut être utilisée comme propriétés, une fois qu'il est établi que le quadrilatère est un parallélogramme.
L'aire du parallélogramme peut être calculée par le produit de la longueur d'un côté et de la hauteur du côté opposé. Par conséquent, l'aire du parallélogramme peut être indiquée comme
Aire du parallélogramme = base × hauteur = AB × h
L'aire du parallélogramme est indépendante de la forme du parallélogramme individuel. Il ne dépend que de la longueur de la base et de la hauteur perpendiculaire.
Si les côtés d'un parallélogramme peuvent être représentés par deux vecteurs, l'aire peut être obtenue par la grandeur du produit vectoriel (produit croisé) des deux vecteurs adjacents.
Si les côtés AB et AD sont représentés respectivement par les vecteurs (
) et (
), l'aire du parallélogramme est donnée par
où α est l'angle entre
et
Voici quelques propriétés avancées du parallélogramme;
• L'aire d'un parallélogramme est deux fois l'aire d'un triangle créé par l'une de ses diagonales.
• L'aire du parallélogramme est divisée en deux par toute ligne passant par le point médian.
• Toute transformation affine non dégénérée prend un parallélogramme vers un autre parallélogramme
• Un parallélogramme a une symétrie de rotation d'ordre 2
• La somme des distances entre tout point intérieur d’un parallélogramme et les côtés est indépendante de l’emplacement du point
Rectangle
Un quadrilatère à quatre angles droits est appelé rectangle. C'est un cas particulier du parallélogramme où les angles entre deux côtés adjacents sont des angles droits.
En plus de toutes les propriétés d'un parallélogramme, des caractéristiques supplémentaires peuvent être reconnues lorsque l'on considère la géométrie du rectangle.
• Chaque angle aux sommets est un angle droit.
• Les diagonales ont la même longueur et se coupent en deux. Par conséquent, les sections coupées en deux sont également de longueur égale.
• La longueur des diagonales peut être calculée en utilisant le théorème de Pythagore:
PQ 2 + PS 2 = SQ 2
• La formule de surface se réduit au produit de la longueur et de la largeur.
Aire du rectangle = longueur × largeur
• De nombreuses propriétés symétriques se trouvent sur un rectangle, telles que;
- Un rectangle est cyclique, où tous les sommets peuvent être placés sur le périmètre d'un cercle.
- C'est équiangulaire, où tous les angles sont égaux.
- Il est isogonal, où tous les coins se trouvent dans la même orbite de symétrie.
- Il a à la fois une symétrie de réflexion et une symétrie de rotation.
Quelle est la différence entre Parallelogram et Rectangle?
• Le parallélogramme et le rectangle sont des quadrilatères. Le rectangle est un cas particulier des parallélogrammes.
• La superficie de n'importe quel peut être calculée à l'aide de la formule base × hauteur.
• Compte tenu des diagonales;
- Les diagonales du parallélogramme se coupent en deux et le parallélogramme en deux pour former deux triangles congruents.
- Les diagonales du rectangle sont égales en longueur et se coupent en deux; les sections bissectées ont la même longueur. Les diagonales coupent le rectangle en deux triangles rectangles congruents.
• Compte tenu des angles internes;
- Les angles internes opposés du parallélogramme sont de taille égale. Deux angles internes adjacents sont supplémentaires
- Les quatre angles internes du rectangle sont des angles droits.
• Considérant les côtés;
- Dans un parallélogramme, la somme des carrés des côtés est égale à la somme des carrés de la diagonale (loi du parallélogramme)
- Dans les rectangles, la somme des carrés des deux côtés adjacents est égale au carré de la diagonale aux extrémités. (Règle de Pythagore)